18,268 research outputs found

    Space shuttle: Aerodynamic characteristics of a composite booster/040A orbiter launch configuration with fin and booster body configuration effect contribution

    Get PDF
    An investigation was made of the fin configuration and booster body configuration effects on a composite booster/040A orbiter launch configuration. Aerodynamic performance and stability characteristics in pitch and yaw were obtained. Configurations tested included two stepped cylindrical bodies of different lengths with a conical nose, four fin shapes of various sizes and aspect ratios mounted in different positions around the base of the bodies, two base flare angles and three 040A orbiter configurations. The orbiter variations included a tailless configuration and two tail sizes. A tailless booster launch configuration with deflected petals (expanded flare sectors) was also tested. The model scale was 0.003366. Data were converted to coefficient form in near real time, punched on cards, and tabulated. The cards used in conjunction with a Benson-Lehner plotter were used to provide plotted data. At the end of the test, tabulated input forms were completed for the SADSAC computer program to aid in publishing the final test data report

    Forebody and vertical stabilizer effects on directional stability of a reusable LOX/RP (061) booster AR 12161-2

    Get PDF
    Results are presented of a wind tunnel test on the directional stability of space shuttle booster configurations. The test was conducted at the 14-inch trisonic tunnel starting 6 December 1971 and continued through 11 December 1971 for a total of 66 occupancy hours. Configurations tested included a cylindrical body with two axisymmetrical noses, one with and without canopy, one delta wing, located in two positions, five vertical tails (including a V tail), two having split rudders, ventral fins, two sets of chines, three airbreathing engine pods, and rocket engine shrouds. The model scale was 0.003366

    Hypersonic structures: An aerodynamicist's perspective, or one man's dream is another man's nightmare

    Get PDF
    The relationship between hypersonic aerodynamic and structural design is reviewed. The evolution of the hypersonic vehicle design is presented. Propulsion systems, structural materials, and fuels are emphasized

    Superburst oscillations: ocean and crustal modes excited by Carbon-triggered Type I X-ray bursts

    Full text link
    Accreting neutron stars (NS) can exhibit high frequency modulations in their lightcurves during thermonuclear X-ray bursts, known as burst oscillations. The frequencies can be offset from the spin frequency of the NS by several Hz, and can drift by 1-3 Hz. One possible explanation is a mode in the bursting ocean, the frequency of which would decrease (in the rotating frame) as the burst cools, hence explaining the drifts. Most burst oscillations have been observed during H/He triggered bursts, however there has been one observation of oscillations during a superburst; hours' long Type I X-ray bursts caused by unstable carbon burning deeper in the ocean. This paper calculates the frequency evolution of an oceanic r-mode during a superburst. The rotating frame frequency varies during the burst from 4-14 Hz, and is sensitive to the background parameters, in particular the temperature of the ocean and ignition depth. This calculation is compared to the superburst oscillations observed on 4U-1636-536. The predicted mode frequencies (∼\sim 10 Hz) would require a spin frequency of ∼\sim 592 Hz to match observations; 6 Hz higher than the spin inferred from an oceanic r-mode model for the H/He triggered burst oscillations. This model also over-predicts the frequency drift during the superburst by 90 %.Comment: Accepted for publication in MNRA

    A crossing probability for critical percolation in two dimensions

    Get PDF
    Langlands et al. considered two crossing probabilities, pi_h and pi_{hv}, in their extensive numerical investigations of critical percolation in two dimensions. Cardy was able to find the exact form of pi_h by treating it as a correlation function of boundary operators in the Q goes to 1 limit of the Q state Potts model. We extend his results to find an analogous formula for pi_{hv} which compares very well with the numerical results.Comment: 8 pages, Latex2e, 1 figure, uuencoded compressed tar file, (1 typo changed

    Non-nequilibrium model on Apollonian networks

    Full text link
    We investigate the Majority-Vote Model with two states (−1,+1-1,+1) and a noise qq on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter qq. We also studies de effect of redirecting a fraction pp of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio γ/ν\gamma/\nu, β/ν\beta/\nu, and 1/ν1/\nu for several values of rewiring probability pp. The critical noise was determined qcq_{c} and U∗U^{*} also was calculated. The effective dimensionality of the system was observed to be independent on pp, and the value Deff≈1.0D_{eff} \approx1.0 is observed for these networks. Previous results on the Ising model in Apollonian Networks have reported no presence of a phase transition. Therefore, the results present here demonstrate that the Majority-Vote Model belongs to a different universality class as the equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure

    Researching ‘bogus’ asylum seekers, ‘illegal’ migrants and ‘crimmigrants’

    Get PDF
    Both immigration and criminal laws are, at their core, systems of inclusion and exclusion. They are designed to determine whether and how to include individuals as members of society or exclude them from it, thereby, creating insiders and outsiders (Stumpf 2006). Both are designed to create distinct categories of people — innocent versus guilty, admitted versus excluded or, as majority would say, ‘legal’ versus ‘illegal’ (Stumpf 2006). Viewed in that light, perhaps it is not surprising that these two areas of law have become inextrica- bly connected in the official discourses. When politicians and policy makers (and also law enforcement authorities and tabloid press) seek to raise the barriers for non-citizens to attain membership in society, it is unremarkable that they turn their attention to an area of the law that similarly func- tions to exclude the ‘other’ — transforming immigrants into ‘crimmigrants’.1 As a criminological researcher one then has to rise up to the challenges of disentangling these so-called officially constructed (pseudo) realities, and breaking free from a continued dominance of authoritative discourses, and developing an alternative understanding of ‘crimmigration’ by connecting the processes of criminal is ation and ‘other ing’ with poverty, xe no-racism and other forms of social exclusion (see Institute of Race Relations 1987; Richmond 1994; Fekete 2001; Bowling and Phillips 2002; Sivanandan 2002; Weber and Bowling 2004)

    The Number of Incipient Spanning Clusters in Two-Dimensional Percolation

    Full text link
    Using methods of conformal field theory, we conjecture an exact form for the probability that n distinct clusters span a large rectangle or open cylinder of aspect ratio k, in the limit when k is large.Comment: 9 pages, LaTeX, 1 eps figure. Additional references and comparison with existing numerical results include

    Diffusive transport in networks built of containers and tubes

    Full text link
    We developed analytical and numerical methods to study a transport of non-interacting particles in large networks consisting of M d-dimensional containers C_1,...,C_M with radii R_i linked together by tubes of length l_{ij} and radii a_{ij} where i,j=1,2,...,M. Tubes may join directly with each other forming junctions. It is possible that some links are absent. Instead of solving the diffusion equation for the full problem we formulated an approach that is computationally more efficient. We derived a set of rate equations that govern the time dependence of the number of particles in each container N_1(t),N_2(t),...,N_M(t). In such a way the complicated transport problem is reduced to a set of M first order integro-differential equations in time, which can be solved efficiently by the algorithm presented here. The workings of the method have been demonstrated on a couple of examples: networks involving three, four and seven containers, and one network with a three-point junction. Already simple networks with relatively few containers exhibit interesting transport behavior. For example, we showed that it is possible to adjust the geometry of the networks so that the particle concentration varies in time in a wave-like manner. Such behavior deviates from simple exponential growth and decay occurring in the two container system.Comment: 21 pages, 18 figures, REVTEX4; new figure added, reduced emphasis on graph theory, additional discussion added (computational cost, one dimensional tubes
    • …
    corecore